2009 Drinking Water Report

Visit the Open Saturdays 9am - 1pm
tech2o.org
Dear Customer:

The U.S. Environmental Protection Agency requires all utilities to prepare and distribute this report on an annual basis. It is part of the provisions of the Safe Drinking Water Act. The information is also submitted to the Texas Commission On Environmental Quality, the state agency that monitors our compliance with the regulatory standards and testing requirements necessary to assure safe drinking water.

El Paso's drinking water has no water quality violations and our water meets or exceeds all applicable standards for drinking water as established by the U.S. Environmental Protection Agency and the Texas Commission On Environmental Quality.

Due to our aggressive planning and capital improvements implementation, we are well positioned for the future.

On behalf of my governing board, the Public Service Board, please be assured that we will continue to work hard for you, our customer, to make certain that we consistently exceed your water supply, water quality and customer service expectations at a reasonable price.

Sincerely,

Edmund G. Archuleta, P.E., President / Chief Executive Officer
What is in Our Water?

All drinking water contains some naturally-occurring contaminants. The sources of both tap water and bottled water include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- **Microbial contaminants**, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural live-stock operations, and wildlife.
- **Inorganic contaminants**, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- **Pesticides and herbicides**, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- **Organic chemical contaminants**, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- **Radioactive contaminants**, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the United States Environmental Protection Agency (EPA) prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration regulations establish limits for contaminants in bottled water. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. In fact, a few of the naturally occurring substances may have nutritional values at low levels. Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please call 594-5733.

More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline (1-800-426-4791).

Required Additional Health Information

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly or immuno-compromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (1-800-426-4791).

Where Our Water Comes From

The water we supply to our customers comes from three sources—one surface water source and two groundwater sources. The surface water source is the Rio Grande. The groundwater sources are the Mesilla Bolson and the Hueco Bolson aquifers. Although some customers receive water from only one source, most customers receive water from two sources, depending on the time of year.

Our treatment plants are designed and operated to treat water to a level of safety far exceeding that required by EPA regulation. El Paso Water Utilities consistently treats surface water to 0.1 NTUs measured immediately after the water has passed through each filter. This is significantly better than the 0.3 NTUs required by EPA regulation.
Frequently Asked Questions

What causes the musty taste and odor I sometimes find in my water?
Sometimes microscopic plants called algae multiply rapidly in the New Mexico reservoirs during the hot summer months. This causes a distinctly different taste and odor to develop in El Paso’s water derived from the Rio Grande. This problem is normally very short lived. Activated carbon is used at the water treatment plants to adsorb these algae-related tastes and odors. Even if the musty smell and taste are apparent, the water is safe to drink.

Does El Paso have hard water? Should I install a water softener?
Water hardness is defined by the amount of calcium and magnesium present. When the levels are comparatively low, water is described as soft. When the levels are comparatively high, water is described as hard.

Water in El Paso is described as moderately hard to hard. Harder water does not lather as easily and does not form as many suds when using soap or detergent. However, there is increasing evidence that the presence of calcium and magnesium found in hard water is desirable for good cardio-vascular health. We do not recommend the installation of water softeners for drinking water.

Is lithium present in El Paso’s water? Does it have an effect on people’s moods?
A small amount of lithium occurs naturally in El Paso’s water. The amount is considerably less than a medical dosage. Lithium is sometimes used by doctors to treat mental disorders. To get the same amount of lithium as in one standard capsule, you would have to drink about 600 glasses of water.

Would a home water purification device make my water safer?
If you are an El Paso Water Utilities customer, these devices are not necessary to make your water safe. If not properly maintained, they may actually cause problems with your water, including uncontrolled growth of disease-causing bacteria. Home treatment devices are not tested or regulated by the state or federal government. Some, however, are tested by independent laboratories.

Sometimes my water seems cloudy. Is the cloudy water safe?
Water that appears milky is usually the result of harmless air bubbles trapped in the water. After a glass of this water sits for a few minutes, the water will become clear as the air bubbles float to the top. Although the air trapped in the water does not affect the safety of the water, please report this problem to El Paso Water Utilities at 594-5733.

Is the chlorine used to disinfect water dangerous?
El Paso uses chlorine to disinfect our drinking water. Chlorine has been used in municipal water in the United States since 1908 and it is the most effective way to ensure that water stays disinfected as it travels through water delivery systems. Chlorine prevents water-borne epidemics such as cholera, typhoid, and hepatitis. The maximum amount of chlorine in El Paso’s water is usually 2 parts per million (ppm). Chlorine in this quantity poses no adverse health risks.

There has been publicity that chlorine in drinking water causes cancer. That is not correct. Chlorine does not cause cancer; however, chlorine may react with organic matter to form substances which can cause cancer if they are present in sufficient quantities. The groundwater used in El Paso is naturally free of most organic matter that will react with chlorine to form cancer-causing substances, and water drawn from the Rio Grande is highly treated before chlorination to minimize the concentration of compounds which can react with chlorine. The maximum level of these cancer-causing substances is regulated by the EPA.

What causes water to sometimes appear discolored or rusty?
Rusting in galvanized pipes in plumbing systems is the typical cause of discolored water. In some cases, rusty or dirty water may come from the distribution system as a result of a main break or fire hydrant use. Iron causes the discoloration, but it is not a health risk. Usually, rusty water will clear after running for a few minutes.

Although rusty or dirty water does not create a health risk, we do not recommend that you drink water that is not clear. If the water does not clear after running or if clothing is stained in the wash, please call El Paso Water Utilities for assistance at 594-5733.

What happened to the cold water?
The temperature of drinking water in El Paso can vary depending on the time of year and the location where the measurement is taken. The outside temperature affects the water temperature as it flows through our water system and through your plumbing.

How can I prevent a rotten egg odor in my hot water?
The smell of rotten egg may be hydrogen sulfide produced by harmless bacteria in your water heater. Odor causing bacteria can live in warm water in your water heater. In order to eliminate the odor, you may need to raise your water heater temperature above 140 degrees fahrenheit for several hours. You should then flush out your water heater. If you are not sure about operating your water heater, consult a dealer or plumber for service.

Is fluoride added to El Paso’s water?
Fluoride is a substance which is known to retard the formation of cavities in teeth. In some communities, fluoride is added to drinking water. The American Dental Association recommends a concentration of 1 part per million. However, fluoride occurs naturally in El Paso’s water at the optimal level. Bottled water usually does not contain fluoride and, therefore, is not recommended for children. Because too much fluoride can be detrimental, the maximum level set by EPA standards is 4 parts per million.
In the desert when we talk water, we talk quantity and quality. We want water, and we want it safe to drink. When you take a sip of water, you have an expectation that it is safe and healthful, but how do you know? What does it mean when we say water is safe to drink?

Our customers receive high-quality drinking water. We obtain about half of our water from the Rio Grande and the remainder is pumped from various deep wells. Most wells deliver fresh water that requires only chlorination, although some groundwater requires treatment to remove naturally occurring substances. Water from the Rio Grande also requires treatment.

Naturally, water contains minerals. As that drop of rain percolates through rocks, some of the calcium, magnesium and other materials from that rock dissolve into the water. It makes the water taste good, and quite frankly, our bodies were designed to function by getting these minerals from the water.

For example, calcium is a good thing, but too much calcium can make the water chalky and funny tasting. Of course, there are some things we don’t necessarily want in the water at all. So, we don’t only need to know what is in the water, we need to know how much of a particular substance is in the water. Both of these questions are answered in the laboratory.

The U.S. Environmental Protection Agency regulates water quality. Typically, when a substance is found in water, EPA conducts research to determine whether or not that substance can adversely affect health.

They want to know if the substance can cause disease - either now or only after a lifetime of exposure. They want to know whether some types of individuals, like babies and children, are more sensitive than others, like adults.

Sometimes answers are very clear, and EPA sets a standard for that substance. Sometimes information changes and the standard changes. Often, the answers are not clear and standards are set only after years of deliberation and testing.

Sometimes an absolute standard is set, and sometimes the standard is set as a goal or requiring a specific type of treatment technique. However, once the standard is set and adopted by the state, public water systems must meet that standard.

Like most public water systems, El Paso Water Utilities wants to not only meet those standards, but to exceed water quality standards and goals. We closely follow the work EPA is doing. We are also active members of the Water Research Foundation and actively participate in national drinking water research.

We know well in advance what new parameters are being examined. We know what new standards EPA is preparing to set. Then, we monitor, both to comply with existing standards and to determine the impact of future standards.

Sometimes in the early stages of the regulatory process, EPA releases preliminary information. Recently, for example, newspapers reported about pharmaceutical substances and drugs being found at very low levels in various water sources throughout the United States.

At this time, EPA has not determined that these substances have any health effects in the very low levels at which they have been found. Nevertheless, our plants use ozone and granular activated carbon treatment systems to treat Rio Grande water. EPA has determined that these are the best available technologies for removing those substances.

El Paso Water Utilities takes water quality very seriously and invested $7.5 million in a state-of-the-art environmental laboratory. We have 29 employees dedicated to water quality testing using instrumentation that can detect substances to the parts-per-trillion level.

We can test for 28 different types of metals, 8 microbiological components, 48 general water quality compounds and over 100 organic substances. We tested about 39,000 samples and performed 211,000 analyses in 2009.

El Paso Water Utilities. We’ve tested the water, and it’s good and safe to drink.

Health-related information about lead:

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. El Paso Water Utilities is responsible for providing high-quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure are available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.
Turbidity (NTU) - Turbidity has no health effects. However, turbidity is monitored because it can interfere with disinfection and provide a medium for microbial growth.

Arsenic (ppb) - While your drinking water meets EPA's standard for arsenic, it does contain low levels of arsenic. EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

DEFINITIONS

Action Level - The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to maximum contaminant level goals as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

N/A - not applicable

Nephelometric Turbidity Unit (NTU) - A measure of turbidity (cloudiness).

Parts per Billion (ppb) - or micrograms per liter. An example of one part per billion is one packet of artificial sweetener sprinkled into an Olympic-sized swimming pool full of water.

Parts per Million (ppm) - or milligrams per liter. An example of one part per million is one packet of artificial sweetener sprinkled into 250 gallons of water.

Picocuries per liter (pCi/L) - A measure of radioactivity.

Treatment Technique - A required process intended to reduce the level of a contaminant in drinking water.

Table: Drinking Water Analysis

<table>
<thead>
<tr>
<th>Substance (Units)</th>
<th>Sample Year</th>
<th>Average Level</th>
<th>Minimum Level</th>
<th>Maximum Level</th>
<th>MCL</th>
<th>MCLG</th>
<th>Possible Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity</td>
<td>2009</td>
<td>N/A</td>
<td>100%<sup>(1)</sup></td>
<td>0.24</td>
<td>Treatment Technique</td>
<td>N/A</td>
<td>Soil runoff</td>
</tr>
<tr>
<td>Inorganics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic (ppb)</td>
<td>2009</td>
<td>7.70</td>
<td>0</td>
<td>17.8<sup>(2)</sup></td>
<td>10</td>
<td>N/A</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Barium (ppm)</td>
<td>2009</td>
<td>0.029</td>
<td>0.006</td>
<td>0.072</td>
<td>2</td>
<td>2</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Fluoride (ppm)</td>
<td>2009</td>
<td>0.30</td>
<td>0</td>
<td>1.21</td>
<td>4</td>
<td>4</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Nitrate as Nitrogen (ppm)</td>
<td>2009</td>
<td>0.77</td>
<td>0</td>
<td>2.38</td>
<td>10</td>
<td>10</td>
<td>Runoff from fertilizer use</td>
</tr>
<tr>
<td>Gross Alpha (pCi/L)</td>
<td>2009</td>
<td>3.8</td>
<td>3.8</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Gross Beta (pCi/L)</td>
<td>2009</td>
<td>7.2</td>
<td>7.2</td>
<td>7.2</td>
<td>50</td>
<td>0</td>
<td>Decay of natural and man-made deposits</td>
</tr>
<tr>
<td>Radium Total (pCi/L)</td>
<td>2005</td>
<td>0.10</td>
<td>0</td>
<td>0.2</td>
<td>5</td>
<td>0</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Selenium (ppb)</td>
<td>2009</td>
<td>1.40</td>
<td>0</td>
<td>10</td>
<td>50</td>
<td>50</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Lead and Copper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper (ppm)</td>
<td>2009</td>
<td>0.5<sup>(3)</sup></td>
<td>0.037</td>
<td>1.1</td>
<td>Action Level = 1.3</td>
<td>1.3</td>
<td>Corrosion of household plumbing systems</td>
</tr>
<tr>
<td>Lead (ppm)</td>
<td>2009</td>
<td>5.4<sup>(3)</sup></td>
<td>0.27</td>
<td>38<sup>(4)</sup></td>
<td>Action Level = 15</td>
<td>0</td>
<td>Corrosion of household plumbing systems</td>
</tr>
<tr>
<td>Coliform Bacteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Coliform Bacteria</td>
<td>2009</td>
<td>N/A</td>
<td>0.0%</td>
<td>0.8%</td>
<td>5%</td>
<td>0</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>Disinfection Residual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorine (ppm)</td>
<td>2009</td>
<td>N/A<sup>(5)</sup></td>
<td>N/A<sup>(5)</sup></td>
<td>2.6</td>
<td>4<sup>(5)</sup></td>
<td>4<sup>(5)</sup></td>
<td>Water additive used to control microbes</td>
</tr>
<tr>
<td>Chlorine Dioxide (ppb)</td>
<td>2009</td>
<td>N/A<sup>(5)</sup></td>
<td>N/A<sup>(5)</sup></td>
<td>42</td>
<td>800<sup>(5)</sup></td>
<td>800<sup>(5)</sup></td>
<td>Water additive used to control microbes</td>
</tr>
<tr>
<td>Disinfection Byproducts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Trihalomethanes (TTHM) (ppb)</td>
<td>2009</td>
<td>35.0<sup>(6)</sup></td>
<td>14.6</td>
<td>75.8</td>
<td>80</td>
<td>N/A</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Total Haloacetic Acids (THAA) (ppb)</td>
<td>2009</td>
<td>9.0</td>
<td>1.5</td>
<td>22.5</td>
<td>60</td>
<td>N/A</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Bromate (ppb)</td>
<td>2009</td>
<td>N/A<sup>(6)</sup></td>
<td>N/A<sup>(6)</sup></td>
<td><5.0</td>
<td>10</td>
<td>0</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Chlorite (ppm)</td>
<td>2009</td>
<td>N/A<sup>(6)</sup></td>
<td>N/A<sup>(6)</sup></td>
<td>0.77</td>
<td>1</td>
<td>0.8</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Removal Ratio</td>
<td>2009</td>
<td>N/A</td>
<td>1.60</td>
<td>1.64</td>
<td>Treatment Technique<sup>(5)</sup></td>
<td>N/A</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>Unregulated Contaminants<sup>(8)</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform (ppb)</td>
<td>2009</td>
<td>3.2</td>
<td>0</td>
<td>16.3</td>
<td>N/A</td>
<td>N/A</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Bromoform (ppb)</td>
<td>2009</td>
<td>3.4</td>
<td>0</td>
<td>10.4</td>
<td>N/A</td>
<td>N/A</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Bromodichloromethane (ppb)</td>
<td>2009</td>
<td>5.3</td>
<td>0</td>
<td>22.5</td>
<td>N/A</td>
<td>N/A</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Dibromochloromethane (ppb)</td>
<td>2009</td>
<td>7.7</td>
<td>0</td>
<td>27.6</td>
<td>N/A</td>
<td>N/A</td>
<td>By-product of drinking water disinfection</td>
</tr>
</tbody>
</table>

⁽¹⁾The lowest monthly percentage of samples meeting limits was 100%.

⁽²⁾Lead and copper concentration shown are at the 90th percentile level at the customer’s tap first draw sample.

⁽³⁾The system average of 35.0 meets the MCL of 80ppb.

⁽⁴⁾The system is in compliance with a yearly removal ratio of 1.00 or greater.

⁽⁵⁾Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

⁽⁶⁾The average and minimum disinfection residuals are dependent on treatment techniques.

⁽⁷⁾Data presented prior to 2009 is from the most recent testing done in accordance with the regulations.

⁽⁸⁾Maximum Residual Disinfectant Level (MRDL) - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

⁽⁹⁾Maximum Residual Disinfectant Level Goal (MRDLG) - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

⁽¹⁰⁾Wells exceeding the MCL are turned off to meet compliance with standards.

⁽¹¹⁾Only one sample exceeded the lead action level of 15 ppb.

HEALTH EFFECTS LANGUAGE

Turbidity (NTU) - Turbidity has no health effects. However, turbidity is monitored because it can interfere with disinfection and provide a medium for microbial growth.

Arsenic (ppb) - While your drinking water meets EPA's standard for arsenic, it does contain low levels of arsenic. EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

Definitions

Action Level - The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to maximum contaminant level goals as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.